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A two-dimensional flow model is introduced with deterministic behavior consisting of bursts that become
successively larger, with longer interburst time intervals between them. The system is symmetric in one
variable x and there are bursts on either side of x=0, separated by the presence of an invariant manifold at x=0.
In the presence of arbitrarily small additive noise in the x direction, the successive bursts have bounded
amplitudes and interburst intervals. This system with noise is proposed as a model for edge-localized modes in
tokamaks. With noise, the bursts can switch from positive to negative x and vice versa. The probability
distribution of burst heights and interburst periods is studied, as is the dependence of the statistics on the noise
variance. The modification of this behavior as the symmetry in x is broken is studied, showing qualitatively
similar behavior if the symmetry breaking is small enough. Experimental observations of a nonlinear circuit
governed by the same equations are presented, showing good agreement.
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I. INTRODUCTION

This paper is motivated by observations of extreme noise
sensitivity in a two-dimensional flow of the form

dx

dt
= f�x,y� � �y − 1�x , �1�

dy

dt
= g�x,y� � �y� − x2y . �2�

This system is a low-dimensional model for the nonlinear
behavior of a plasma instability in which y represents the
pressure gradient, and instability �with amplitude x� is driven
by the pressure gradient and fixed magnetic field line curva-
ture. Such pressure-driven instabilities are thought to be re-
sponsible for edge-localized modes �ELMs� observed as
fluctuations at the edge of a tokamak �1,2�. Some ELMs,
called type-I ELMs, show temporal behavior which is quite
simple, consisting of well separated large bursts, indicating
that their dynamics can be represented by a low-order sys-
tem. However, the time series appear to show chaos, and it is
of some interest to determine whether this apparently chaotic
behavior is indeed deterministic chaos or whether it is due to
sensitivity to noise from, for example, the plasma core. For
example, if the apparent chaos is due to noise, the behavior
can occur in a two-dimensional model, whereas an autono-
mous model showing similar apparently chaotic behavior
must be at least three dimensional.

The effect of noise has been studied in other experimental
physics situations, and the kind of extreme sensitivity to
noise we discuss here has been observed. For example, in
experiments involving the formation of droplets in a viscous
fluid �3�, the fluid is observed to form thin necks repeatedly
as a part of the process. Simulations showed the formation of
necks, but the repeated formation of necks required noise in
the modeling, although extremely small noise gave agree-
ment. Another example involves studies of a neodymium-
doped yttrium aluminum garnet laser with an intercavity po-

tassium titanyl phosphate crystal. Theoretical studies were
performed to model the laser dynamics �4�, showing that the
type-II chaotic dynamical behavior of the laser was observed
to be very sensitive to noise and was actually found to am-
plify the noise. Because of the role of a very low level of
noise in such disparate physical systems, we have been mo-
tivated to do detailed studies of �1� and �2� and related sys-
tems perturbed with a low level of noise.

For the system �1� and �2� with zero noise, the behavior
�y� arises for the following reason: on time scales longer
than the time for magnetic flux to penetrate the edge region,
the electric field equals the driving field E and Ohmic heat-
ing takes the form �T /�t��E2, where T is the electron tem-
perature and ��T3/2 is the electrical conductivity. This gives
�T /�t�T3/2 �until the growth is limited by thermal conduc-
tion� and the pressure gradient y is proportional to T. Then
the magnetic field x grows if y�1, but for large enough field
x the term −x2y, which represents the flattening of the pres-
sure gradient due to the fluctuation, enters. This causes a
decrease in y, which quenches the growth of x. Other bursty
behavior observed in plasma devices, for which the ampli-
tude and characteristic period may be related to noise, in-
clude sawtooth oscillations in tokamaks and reversed field
pinches.

For this flow, x=0 is an invariant manifold, the unstable
manifold of the fixed point at x=y=0. See Fig. 1. The x axis
is the stable manifold of the same fixed point. There are two
unstable spirals with x= ±x0= ±��. The nonlinear determin-
istic behavior consists of orbits coming out of these spirals,
with increasingly larger bursts more widely separated in
time. Because of symmetry in x, identical bursts can occur
on both sides of x=0, isolated from each other by the invari-
ant manifold x=0.

With a small amount of uncorrelated Gaussian noise
added to Eq. �1�, we find that the resulting nonlinear stochas-
tic equation has the following property: the bursts saturate in
amplitude, leading to behavior that is qualitatively similar to
deterministic chaos. We call this behavior noise stabilization.
Further, the noise allows transitions across the y axis, an

PHYSICAL REVIEW E 73, 026220 �2006�

1539-3755/2006/73�2�/026220�12�/$23.00 ©2006 The American Physical Society026220-1

http://dx.doi.org/10.1103/PhysRevE.73.026220


invariant manifold for the deterministic system. Statistically,
the dynamics is symmetric. In particular, we focus on the
fraction of the number of bursts with x�0 compared with
those with x�0; with statistical symmetry these are equal. In
the physical system motivating this work, the processes we
model as noise have a much shorter correlation time than the
processes described by the deterministic equations �1� and
�2�; hence modeling them as noise is appropriate. Noise-
stabilized systems are interesting for several reasons. Most
importantly, although they can exhibit dynamical behavior
that is reminiscent of deterministic chaos, it is likely that
their behavior for very low noise level is distinguishable
from deterministic autonomous low-dimensional systems.
Our model system was chosen to emphasize the noise-
stabilizing effect, in the sense that it has no attractor in the
zero-noise limit. In physical applications, distinguishing
noise-stabilized behavior from more familiar types of dy-
namics could be critical for understanding and predicting
how the system under study will change as the noise driving
is modified.

There have been several related papers on nonlinear sto-
chastic equations which are sensitive to a small amount of
noise. Sigeti and Horsthemke �5� studied the effect of noise
at a saddle-node bifurcation, and found noise-induced oscil-
lations at a characteristic frequency. Stone and Holmes �6�
studied systems with an attracting homoclinic orbit or an
attracting heteroclinic cycle �structurally stable because of
the presence of a symmetry� in the presence of noise. They
found that the effect of the noise is to prevent the time be-
tween bursts from increasing on each cycle. Lythe and Proc-
tor �7� found that in a system with a slow invariant manifold
subject to a fast time scale instability, the system is ex-
tremely sensitive to noise. Stone and Armbruster �8� studied
structurally stable �again because of symmetry� heteroclinic
cycles in the presence of noise, and analyzed the jumping
between invariant subspaces of the deterministic system.
Armbruster and Stone �9� studied heteroclinic networks in
the presence of noise, and the induced switching between

cycles. References �6,8,9� stressed the importance of the lin-
ear part of the flow near the saddles. Moehlis �10� has inves-
tigated a system representing binary fluid convection, and
found that states with large bursts can be very sensitive to
noise. References �11,12� deal with a system �susceptible-
exposed-infected-recovered� describing epidemic outbreaks
and show that chaos can be induced for parameters far from
the region for which the deterministic system is chaotic.

Our model is different from the above in the following
ways: it is motivated by a physical system in which the am-
plitudes of the bursts, which were not treated in the above
references, are important; further, we present experimental
results on a circuit, in which the effects of weak symmetry
breaking were first observed.

In Sec. II we introduce the deterministic form of the
model, and discuss the bursting behavior and the choice of
the parameter �.

In Sec. III we introduce the stochastic model and present
results. These results include those on the distribution of
maxima of �x� and the time interval T between bursts, and the
dependence of these quantities on the noise diffusion coeffi-
cient D. A brief discussion of the behavior near the y axis is
shown. In this limit, the behavior in x is linear and can be
treated by the Fokker-Planck equation, discussed briefly in
Appendix A.

In Sec. IV we discuss the role of reflection symmetry in x
and the effect of weak symmetry breaking �offset�; we show
that in a sense the system with noise is structurally stable.
We also discuss briefly some modifications to the system at
small and large y, and a modified form of the equations in
which the noise is replaced by a sinusoidal perturbation.

In Sec. V we show results from an experiment with a
nonlinear circuit modeled by Eqs. �1� and �2�, showing noise
stabilization in a physical system.

In Sec. VI we summarize our work.

II. DETERMINISTIC MODEL

The deterministic form of the model we study is Eqs. �1�
and �2�. The parameters � ,� are the only parameters that
cannot be removed by rescaling x, y, and t. Starting with x
=0 and y�0, y increases in time, going to infinity in finite
time if ��1. For y�1 small initial values of x begin to
grow. �The instantaneous growth rate of x in Eq. �1� equals
y−1.� If x grows at a rapid enough rate relative to y �to be
quantified later�, the second term in Eq. �2� eventually domi-
nates the first and y decreases.

For ��1 the system has fixed points at y=1, x= ±x0 and
at x=y=0. Near these fixed points, orbits evolve according to

d

dt
�x�t� = J�x�t� , �3�

with

J�x,y� = 	 y − 1 x

− 2xy ��y�−1 − x2
 .

The two fixed points at x= ±x0, y=1 are unstable spirals for

0 � � − 1 � �8/� . �4�

FIG. 1. Orbits initiated near the fixed points at x= ±x0= ±��,
y=1. The orbit on the right spirals out clockwise, the one on the left
counterclockwise. The x and y axes are, respectively, stable and
unstable manifolds of the fixed point at the origin.
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Orbits continue to spiral outward nonlinearly for ��1. This
is demonstrated by showing that the function H�x ,y�=y
−ln y+x2 /2−� ln x is a Lyapunov function. Indeed,

dH

dt
=

dx

dt

�H

�x
+

dy

dt

�H

�y
= ��y − 1��y�−1 − 1� ,

so that for ��1, dH /dt�0 and the orbits spiral outward for
all time, since H has a minimum at x=x0, y=1. For ��1,
dH /dt�0 and the orbits spiral in to the fixed point. �For �
=1 the system is equivalent to the Lotka-Volterra system,
with Hamiltonian H.�

The system has another fixed point, but with nonanalytic
behavior in y for noninteger �, at x=0, y=0. The axes x=0,
y=0 are invariant manifolds; we consider only y�0, and for
the noise-free case orbits with x�0��0 remain in that quad-
rant. In the range of � and � given in Eq. �4�, orbits spiral
away from the fixed points at �±x0 ,1� �Fig. 1�, approaching
the x and y axes, as shown in Fig. 2, which has �=0.5, �
=1.2. After an initial transient, the motion is bursty, with
each successive oscillation coming closer to the axes, leading
to a larger interburst interval, followed by a larger burst.

Next, we turn to a discussion of the choice of the param-
eter �. Let us investigate the range of the parameters � ,� for
which the system exhibits successively larger and more
widely separated bursts.

Consider Eqs. �1� and �2� for large y and small x, i.e.,

dx

dt
= yx , �5�

dy

dt
= g�0,y� � �y�. �6�

From these we conclude

x = xc exp� y2−�

��2 − ��
 , �7�

where xc exp�1/��2−��� is the value of x when the orbit
passes y=1 with small x. Let us compare the two terms on
the right in Eq. �2�. For 1���2, the nullcline dy /dt=0 is
crossed when x2��y�−1 or

xc
2 exp� 2y2−�

��2 − ��
 � �y�−1, �8�

which occurs eventually. So, in each burst, y reaches a maxi-
mum and begins to decrease, starting a new cycle, as long as
x�0. �The orbits with x=0 go to infinity in finite time for
��1.�

For �=2, we can use Eq. �5� with Eq. �2� for arbitrary x
�including the term −x2y� to obtain, for large y,

dy

dx
= �

y

x
− x .

The solution is y=	x�−x2 / �2−��, with 	�0; the nullcline
has y=x2 /�. For ��2, the nullcline is crossed and the cycle
begins again. For ��2 the nullcline is not crossed and the
orbit can go off to infinity in one cycle, in finite time.

FIG. 2. Orbits �a� x�t� and �b� y�t�, and �c� phase plane y�x� for

the deterministic equations �1� and �2�, with �=0.5, �=1.2, with an

initial condition near the fixed point at x=��, y=1. The orbit spirals

out of the fixed point, continuing to expand, eventually piling up

near the invariant manifolds x=0, y=0, with bursts to large values

of x and y and long interburst time intervals spent mostly near

x=y=0.
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For ��2, the nullcline in Eq. �8� is never reached if xc is
small enough. This means that if the value of x when the
orbit crosses y=1 is below some critical value, the orbit will
go off to infinity before another cycle. Therefore, an orbit
starting near the fixed point �x ,y�= ��� ,1� will encircle the
fixed point a finite number of times and then go off to infinity
in finite time.

III. STOCHASTIC MODEL AND RESULTS

A. Model

With noise, the system based on Eqs. �1� and �2� is a
nonlinear stochastic ordinary differential equation �ODE�, of
the form

dx

dt
= f�x,y� + �2D
�t� , �9�

dy

dt
= g�x,y� , �10�

with 
�t� representing uncorrelated unit-variance Gaussian
noise, having �
�t��=0, �
�t�
�t���=��t− t��. Here, D is the
Brownian diffusion coefficient. For a low noise level, 
�t�
affects the dynamics only near the y axis, where f�x ,y� is
small. The motivation for including noise in the x equation
but not in the y equation is the following. Without noise, on
the y axis for y�1, the magnetic field perturbation x�t� can
decrease to an unrealistically low level. Noise prevents x
from becoming so small for 0�y�1, and therefore is ex-
pected to prevent the successive bursts from continuing to
increase in magnitude, with increasing interburst time inter-
val. We do not include noise in the y equation �the equation
for the pressure gradient� because y is a mean field quantity
representing mean pressure gradient, which is expected to be
much less susceptible to noise. In particular, it would be
unphysical for noise to cause the mean pressure gradient y to
become negative when the orbit is near the x axis.

We integrate the nonlinear stochastic ODE system �9� and
�10� numerically, with a noise term in x added at each time
step. Specifically, the time stepping from t to t+h is

x�t + h� = x�t� + hf� x�t� + x�t + h�
2

,
y�t� + y�t + h�

2



+ �2Dh
�t� ,

y�t + h� = y�t� + hg� x�t� + x�t + h�
2

,
y�t� + y�t + h�

2

 .

�11�

The implicit form of the deterministic part is solved by a
simple Picard iteration, and the random term is added. Each
value 
�t� is an independent random number with zero-mean
Gaussian distribution and unit variance, and the coefficient
�2Dh is chosen to give results independent of h �in a mean
square sense� for small h.

B. Numerical results

Results for the same parameters as in Fig. 2, with noise
having D=5�10−9, are shown in Fig. 3, with 0� t�1000.
The orbits are still of a bursty nature, but the bursts and the
interburst time intervals are limited in magnitude. The suc-
cessive bursts appear to be uncorrelated and bursts with x
negative are as common as those with x positive, after the
transient near the fixed point at x=x0=��, y=1. To the eye,
these results appear similar to those of a chaotic determinis-
tic system, e.g., the y-z projection of the Lorenz system �13�.

To analyze the bursts in terms of amplitude and time in-
terval between bursts, we introduce xn, xn+1 and Tn �see Fig.
2�. These are, respectively, the amplitude �in x� of a burst �a
local maximum for positive x, a local minimum for negative
x�, the amplitude of the following burst, and the time interval
between them. In Fig. 4 we show scatter plots of Tn vs xn,
xn+1 vs Tn, and the composite xn+1 vs xn for the parameters of
the case of Figs. 3 and 4, indicating the probability density
functions f1�xn ,Tn�, f2�Tn ,xn+1�, and f3�xn ,xn+1�. These are
the marginal distributions of the full distribution
g�xn ,Tn ,xn+1� projected over xn+1, xn, and Tn, respectively.
The first has very little scatter. This property is related to two
aspects. One is the fact that the noise is added only to x�t�
and has little effect except when x is small. The other is that
most of the time interval Tn is spent near the saddle at x=y
=0, after the burst but before the orbit can be influenced
again by the noise, as it passes along the y axis near y=1.
This lack of scatter shows a very strong correlation. How-
ever, this correlation is strongly nonlinear and would not be
reflected in the linear correlation coefficient, but would re-
quire a diagnostic such as the conditional entropy �14�. The
other plots show the expected symmetry in x. Specifically,
there are four equivalent peaks in the four quadrants in Fig.
4�c�, showing that successive peaks are positive or negative,
independent of the sign of the previous peak. Figure 4�b�
shows a long tail in Tn, and sharp cutoffs for small �xn� and
small Tn.

In Fig. 5 are histograms, showing the marginal distribu-
tions of xn, at the maxima of �x�, and the interburst time Tn.
�See Fig. 2.� The maximum time was t=106 and there were
about 23 000 peaks in xn and the same number of interburst
intervals Tn. The histogram of xn is symmetric and shows
peaks at �xn�=3.7, with tails around �xn�=4.5 and a sharp
cutoff inside at �xn�=3.3. The latter histogram, reflecting the
nonlinear correlation of Tn with xn shown in Fig. 5�a�, has a
strong cutoff inside Tn=30, a peak at Tn=38, and a tail for
T�60–80.

Based on Sec. II, we expect considerably different results
for ��2. These results show that, for the deterministic sys-
tem, if the value of x at the throat y=1 is small enough, the
orbit will go off to infinity before another cycle occurs.
Therefore, we expect that if the noise level D is small
enough, the orbit may have a few bursts, but will diverge to
infinity as soon as the cycle comes close enough to x=0 as it
crosses y=1. For large values of D, the orbit may behave as
in Fig. 3 for a very long time, but whenever x becomes small
enough at the inner crossing of y=1, the orbit will also go to
infinity before another cycle. Numerical simulations bear this
out.
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FIG. 3. Orbits �a� x�t�, �b� y�t�, and �c� phase plane y vs x for the
system with noise, Eqs. �9� and �10�. The parameters are equal to
those in Fig. 2, with D=5�10−9. The initial condition is near the
spiraling fixed point, so that the transient spiral shows. Note that the
maximum time t=103 is much larger than in Fig. 2.

FIG. 4. Scatter plots �a� Tn vs xn, �b� xn+1 vs Tn, and �c� xn+1 vs
xn for the case of Fig. 3. Note that there is hardly any scatter in �a�.
The extent of the burst �measured as �xn� or as the peak of y�t��
determines Tn, because after a larger burst the orbit approaches the
origin closer to the x axis, because most of the interburst time is
spent near x=y=0, and because the noise is effective only near the
y axis. The statistics plotted in �b� is symmetric in xn+1 and has a
long tail in Tn. The plot in �c� is symmetric in xn and xn+1, with four
essentially identical peaks near �xn�= �xn+1�=4.
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C. Fokker-Planck analysis near x=0

The maxima in �x� occur at y=1. These are related to the
values of x near zero for which y=1: for small values of D,
the noise is important only near the y axis, and as the orbit
lifts off this manifold it essentially obeys the deterministic
equations, and therefore the peaks in �x� are determined to
high accuracy by the crossing of y=1 for small x �Fig. 6�. In
this section we quantify this behavior by means of analysis
involving the Fokker-Planck equation for behavior near the y
axis.

As the orbit travels near the y axis, x�t� satisfies the linear
stochastic equation

dx

dt
= 
�t�x + �2D
�t� , �12�

where 
�t�=y�t�−1; for small x, y satisfies ẏ=�y�, indepen-
dent of x. The noise 
�t� has the statistical characteristics
described after Eqs. �9� and �10�. Linearization in x holds
for small D, up to the time when the term −x2y in Eq. �2�
becomes important. For low noise level �small D�, the
successive bursts are large in magnitude, leading to small
values of x on the next pass. On each successive pass near
y=1, the correlation with the previous peak of �x� is lost. This
behavior is due to the fact that for g�0,y�=�y� with ��1, x
becomes small enough to become dominated by the noise
while y�1.

In Appendix A we have included an analysis based on the
Fokker-Planck equation for orbits near x=0, where Eq. �12�
is valid. Conclusions based on this Fokker-Planck analysis
and direct simulations are the following. The mean value
��xn�� �cf. Fig. 5�a�� decreases with D. The dependence of this
quantity is shown as a function of D in Fig. 7�a�. The mean
of the histogram of the interburst time Tn as a function of
D is shown in Fig. 7�b�. As we discuss in Appendix A, the
orbits cross y=1 with typical values of x proportional to
�x��1/2�D1/2 /�1/4, and proceed with little subsequent
effect of noise. The dependence of ��xn�� on D appears to be
approximately logarithmic for small D.

The analysis in Appendix A shows that for small x, near
the intersection with y=1, x has a Gaussian distribution

f�x��e−x2/2�x
2
. This yields a distribution for x�, at the next

crossing of y=1 where �xn� is a maximum, equal to

g�x�� = �dx/dx��f„x�x��… .

The second factor is responsible for the sharp cutoff to the
left of the peak in x� �Fig. 5�a��, corresponding to x being in
the tail of the Gaussian. The tail to the right of the peak in
Fig. 5�a� is due to the Jacobian factor �dx /dx��. From the
Gaussian form for f�x� we obtain �dx /dx���x�e−x�2

and

g�x�� � �x�e−x�2
�e−x�x��2/2�x

2
.

FIG. 5. Histograms N1�xn�, N2�Tn� of �a� xn, extrema of x, and
�b� time intervals Tn, respectively, showing the marginal distribu-
tions for these quantities. The histogram of �xn� in �a� has a tail with
�xn��5 and a strong cutoff for �xn��3.3; Tn in �b� also has a tail to
the right and a sharp cutoff to the left. For this case the mean values
are ��xn��=3.87 and �Tn�=49.1, respectively.

FIG. 6. Sketch of deterministic orbits near x=0. The minima of
�x� are at the throat y=1. In this region, the equations can be linear-
ized with respect to x and noise can have a large influence. The
values y=y1 ,1 ,y2 correspond to t= t1 ,0 , t2 in the text.
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The first �Jacobian� factor x�e−x�2
gives a Gaussian-like tail

for large x� and the second factor gives a cutoff for x� close
to the fixed point x�=x0=��, where x�−x0=−s1�x−x0�. This
cutoff is sharp if �x�x0.

IV. THE ROLE OF SYMMETRY AND RELATION WITH
OTHER MODELS

We have commented that the system �9� and �10� has
certain features that are not generic. These issues are �a� the
fact that deterministic orbits eventually go to infinity, �b� the
nonanalytic behavior of y� near y=0, and �c� the reflection
symmetry of the equations in x. To deal with issue �a�, we
have considered a system with �y�→�y��1−�y� in Eq. �2�.
For small enough � or large enough noise level, the orbits
stay well below the new fixed point at x=0, y=1/� and the
results are essentially identical to those with �=0. Regarding
issue �b�, we considered modified systems without the domi-

nant y� behavior at y=0, e.g., �y�→���y+y��. The results
are essentially identical to those of Sec. III B, with the ex-
ception that the time intervals between bursts are typically
shorter for ��0. We deal with issue �c� in Sec. IV A.

Also, we have integrated Eqs. �1� and �2� with a sinu-
soidal term 
�t�=b sin��t� added to the x equation rather
than random noise. The sinusoidal and random forms of 
�t�
are extremes of temporal driving, with quasiperiodic time
dependence and colored random time dependence as inter-
mediate cases. In all such cases the analysis of Sec. III B
indicates that the typical value of x at y=y2 is the important
factor. �See Sec. III B and Fig. 6.� To explore this further, we
have obtained results for �=1.2, �=0.5, as in Fig. 3, and with
various values of � and b. The results were found to be
qualitatively similar to those with noise, with a simple rela-
tion between b and D, showing that indeed the accumulated
effect on x at the time y=y2 is the determining factor. That is,
�x�b /� or b /��D1/2 /�1/4. In particular, the behavior of
��xn�� and �Tn� are similar. �Also, we have computed the
Lyapunov exponent h1 for the case with 
�t� random as well
as sinusoidal. For �x�b /�, h1 is comparable.�

A. Breaking of the symmetry in x

We have investigated the effect of breaking the reflection
symmetry x→−x in Eqs. �9� and �10�, motivated by the ex-
perimental results shown in Sec. V. The simplest way of
breaking this symmetry is to introduce a constant offset.
With this offset, Eq. �9� takes the form

dx

dt
= �y − 1�x + a + �2D
�t� , �13�

with the y equation unchanged. With zero noise and for a
�0 a stable limit cycle is formed to the right of x=0, and
points near �x ,y�= �0,0� go into this limit cycle. �For a�0
the results are identical, with x→−x.� Therefore the zero-
noise results of Sec. II are not structurally stable with respect
to such an offset.

However, in the presence of noise, the results change con-
siderably. In Figs. 8�a� and 8�b� we show x�t� and the phase
portrait y vs x for a case with the same parameters as in Fig.
3 �in particular with D=5�10−9�, but with a=5�10−5. The
results are qualitatively similar to those in Fig. 3 except that
most of the bursts go to the right. In Fig. 8�c� we show the
fraction � of bursts that go to the left as a function of the
offset a for three values of D. For a��D, the fraction � is
appreciable and the orbits behave qualitatively as in Fig. 3.
For a��D, on the other hand, virtually all the orbits go to
the right ���0� and therefore behave qualitatively as the
limit cycle found for D=0, a�0. These results, and those of
Appendix A showing �x��D, indicate that the offset
changes the results qualitatively if it moves the orbit outside
the region near x=0 where noise dominates.

This brings up the issue of structural stability of the be-
havior observed for a=0. For zero noise, this behavior, seen
in Fig. 2, is certainly not structurally stable. However, for
D�0 the qualitative behavior persists as long as a��D.
�For small x, this conclusion is consistent with the scaling

FIG. 7. Mean values of �a� the burst peaks ��xn�� and �b� the
interburst time �Tn� as functions of D. The parameters �except for
noise level� are the same as in Fig. 2. The quantity ��xn�� appears to
behave logarithmically for small D.
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symmetry x→�x , a→�a , D→�2D.� In this modified sense,
the system with finite noise is structurally stable.

We will return to the issue of an offset in the electronic
circuit in the next section.

V. ELECTRONIC CIRCUIT

In order to test for noise stabilization in a physical system,
we have constructed a circuit which integrates Eqs. �9� and
�10�. In dimensionless integral form, these equations

are x���=x0+��0

� ��y−1�x+ 
̂�����d�� and y���=y0+��0

� ��y�

−x2y�d��, and the parameter values used in the circuit were
�=0.5 and �=1.2, as in Figs. 3–5, 7, and 8. The circuit de-

sign is shown in Fig. 12 below. The white noise, 
̂�t�
=�2D
�t�, stabilized the oscillations, and Figs. 9–11 show
that the circuit output agreed well with numerical solution of
Eqs. �12� and �13�. We also observed the structural instability
in these equations. See Appendix B for a description of the
circuit design.

A. Properties of the added noise

The noise was generated by creating random numbers and
recording them to a .wav file to play back via the computer’s
audio output at the standard rate of 44 kHz. This net process
effectively filters the noise through a low-pass filter. When
we sampled the noise using a digital oscilloscope, we found
that the noise had a relatively constant spectrum to frequen-
cies as high as 20 kHz. We autocorrelated the noise, and
found that it was well represented by

�VN�t�VN�t��� =
A0

��t − t��
sin 2�

�t − t��
T

with a period T=50 �s, which also represents a flat spectrum
filtered by a 20 kHz low-pass filter. For times longer than
T / �2��, this autocorrelation function is a good approxima-

FIG. 8. Results with an offset �cf. a in Eq. �13��. In �a� and �b�
are x�t� and y vs x for parameters as in Fig. 2, again with D=5
�10−9. In �c� is the fraction � of bursts to the left, for three values
D=5�10−9, 5�10−7, 5�10−5.

FIG. 9. Circuit output �dots� compared to numerical solution of
the ODE �traces�, with parameters as in Fig. 2. Adjusting the simu-
lation parameters to fit the data showed that all circuit parameters
are within 3% of their expected values. The insets show the agree-
ment of the �digitized� data and simulation near the fixed point.
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tion of A0��t�. By evaluating the autocorrelation function at
t=0, we can determine that A0= �T /2��VN

2 � so the diffusion
rate is A0 /2 or

D = ��VN

V2

2��R2

R4

2 T

4R1C1

in terms of the scaled variables used in Appendix B. The
theoretical minimum diffusion constant for our circuit
parameters given by Eq. �B1� is well below the intrinsic
noise in the circuit. This intrinsic noise is not well character-
ized and occurs in both the x and y variables. We use a large
enough value of the noise amplitude so that the intrinsic
noise contribution is negligible. We show in Figs. 10 and 11
the quantities Tn−1 vs xn and Tn vs xn, first obtained from
the experiment and also by integrating numerically the dif-
ferential equations with the same parameters, in particular

D=4.7�10−4. �These results are similar to those in Fig. 4,
but with a different value of D.� The agreement is very good.

B. Offsets and symmetry breaking

The primary difficulty in designing this circuit is that
small DC offsets at the input of the integrators significantly
change the differential equations. In particular, an offset in
the input to the y integrator either drives the Vy output nega-
tive to create an error in the AD538 computational unit, or it
leads to a stable limit cycle similar to that described in Sec.
IV. We adjusted a small current ��0.45 �A� to minimize the
Vy offset, using the automatic reset circuit to recover when-
ever Vy became negative. The reset kicks the circuit back
into the vicinity of one of the unstable spirals. The x integra-
tor naturally follows, bringing Vx to a value near its fixed
point. Without this reset, a negative value of Vy leading to
the failure of the AD538 causes the circuit to fall to a stable
fixed point with a large negative value of Vy. An external
trigger can also reset the circuit to values near its unstable
fixed point.

FIG. 10. Comparison of peak height xn to �a� time since previ-
ous peak Tn−1 and �b� time until next peak Tn, from experiments.
The correlations seen here are indicative of noise stabilization. The
noise level is D�4.7�10−4.

FIG. 11. The same quantities as in Fig. 10 from numerical com-
putation of Eqs. �9� and �10�.
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Similarly, we also corrected the offset in the x integrator
by adding �0.2 �A at the integrator input. We adjusted this
value until the noise signal generated equal numbers of nega-
tive and positive x pulses. After these adjustments, we ob-
served the basic structure of the oscillations as they evolved
away from the fixed point, in order to verify that the circuit
wave forms were the same as the model calculations �see
Fig. 9�. The fact that such a simple adjustment can give
results in agreement with the symmetric model is consistent
with the extended concept of structural stability discussed at
the end of Sec. IV A. The results also show that the circuit is
a sensitive detector of offsets.

VI. SUMMARY

We have performed a study of a nonlinear stochastic ODE
whose deterministic form has unstable spirals, leading to
bursty behavior, with successive bursts growing in magni-
tude and with larger time intervals between them. This bursty
behavior is due to the fact that after each burst, the orbit
comes closer to the unstable manifold �y axis� of a hyper-
bolic fixed point at the origin, and therefore travels farther
along this unstable manifold before diverging from it to form
the next burst.

In the presence of noise at a very small level, the bursts
get stabilized in the sense of becoming limited in magnitude.
The time interval between them is also limited, and the
bursts can go to either positive or negative x. In many quali-
tative senses, the behavior appears like deterministic chaos.

This system has reflection symmetry in x; an offset a in x
destroying this symmetry can lead to completely different
behavior, depending on its magnitude relative to the noise.
That is, the bursty behavior seen in the symmetric determin-
istic equations is not structurally stable. With noise and a
small value of the offset �a���2D �D is the Brownian diffu-
sion coefficient�, the bounded bursty behavior persists, but
with more bursts going to the right if a�0 �to the left if
a�0.� For larger offset a��2D, all bursts go to the right
and basically give a noisy form of the stable limit cycle. In
this sense, the results in the presence of noise and a=0 are
structurally stable.

We have described briefly results on a nonlinear circuit
satisfying the same equations as the model. The circuit be-
haves similarly to the model. In particular, the circuit is very
sensitive to the presence of an offset, and in practice the
offset is adjusted to minimize the asymmetry of the signal.
More details are presented in Ref. �15� and in Appendix B.

The system �9� and �10� and its generalizations in Sec. IV
are arguably the simplest realizations of systems in which a
small noise level can limit the amplitude of bursts and lead to
qualitatively distinct behavior. We have listed in the Intro-
duction physical examples of systems in which this effect
may be important. For the tokamak example, the results here
should have an impact on low-dimensional modeling of
ELMs. Indeed, the observation of chaotic time dependence
of ELM data suggests that a simple autonomous ODE model
must be three dimensional. However, tokamaks are known to
have a broad spectrum of fluctuations �turbulence�. If these
fluctuations can be treated as uncorrelated noise, i.e., if their

correlation time is much shorter than ELM time scales, it is
justifiable to explore two-dimensional models with noise
such as the models studied here.
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APPENDIX A: FOKKER-PLANCK EQUATION

The stochastic behavior of Eq. �12� is governed by the
Fokker-Planck equation for the probability density function
f�x , t�,

�f

�t
+

�

�x
�
�t�xf� =

�

�x
�D

�f

�x

 , �A1�

where D=�2 /2 is the diffusion coefficient. For arbitrary 
�t�,
Eq. �A1� has the exact solution

f�x,t� =� 1

2���t�
e−x2/2��t�

with d� /dt=2���t�
�t�+D�. This has the solution

��t� = 2D�
−�

t

ds1 exp�2�
s1

t


�s2�ds2
 ,

assuming ��t→−��=0. Thus, ��t� is proportional to D, with
a coefficient depending on 
�t�.

If 
 is approximately constant ��
̇ /
2��1� and negative,
we obtain

f�x,t� → ��
�t��/2�De−�
�t��x2/2D. �A2�

Another regime, entered at t= t1, is found by neglecting 
�t�
in Eq. �A1�, giving the purely diffusive random walk result

f�x,t� �
1

�4��Dt + �0�
e−x2/4�Dt+�0�. �A3�

A third range has 
 positive with advection dominating dif-
fusion. We find

��t� = ��t2�exp�2�
t2

t


�s�ds
 , �A4�

where t2 is the time this range is entered, i.e., where

�t2���t2��D. In this range the noise becomes negligible.

For application to Eqs. �9� and �10�, consider x small so
that its equation is linear �when the second term on the right
in Eq. �10� is negligible�. We then note that if � is small for
y�0, then ��t� near y=1 �recall 
�t�=y�t�−1=0� is propor-
tional to D /�
̇0. Since 
̇= ẏ��, we have ��y�1��D /��.
After a diffusive stage �t1� t� t2 , y1�y�y2�, � continues
to increase as in Eq. �A4�, with noise no longer playing a
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role. Thus, the nonlinear orbit for later times depends only on
the noise accumulated by the time �here t= t2, y=y2�; the
value of x at y�y2, when noise last plays a role, is propor-
tional to ���D1/2 /�1/4. See Fig. 6. Thus, in essence, the
orbit from the crossing of y=1 with small x out to the next
crossing and back to near the origin is deterministic, and the
noise plays its role only along the y axis.

APPENDIX B: CIRCUIT DESIGN

The design of our circuit is basically the same as reported
in Ref. �15�, but we have adjusted our circuit parameters, and
extended the analysis of the circuit behavior. For the sake of
completeness, we have included all of the new circuit param-
eters in this appendix, as well as our analysis of the mini-
mum noise amplitude necessary to keep the circuit from
saturating the circuit elements.

The analog circuit consists of three basic subcircuits: the x
integrator, the y integrator, and the reset controller, as shown
in Fig. 12. The integrators use OPA 4228 operational ampli-
fiers �low noise, 33 MHz bandwidth� with capacitive feed-
back �10 nF� to integrate their inputs. V1 and V2 are constant
applied voltages, while Vx and Vy are time-varying voltages,
proportional to x��� and y���, respectively.

The input to the y integrator uses an AD538 real-time
computational unit �400 kHz bandwidth� to raise the Vy volt-
age to a fractional power Vy�t��−1 by taking its logarithm,
scaling the result by �−1, and then exponentiating to gener-
ate V1�Vy�t� /V2��−1. This output is then added into the output
of an MPY634 precision multiplier �10 MHz bandwidth� that
creates the ratio Vx

2�t� /V2. A second MPY634 multiplies this
combined signal by Vy /V2 before it enters the integrator. We
also use additional small adjustable current sources to elimi-
nate offsets.

The input to the x integrator is the sum of Vx, the noise
source, and VxVy /V2 formed by another MPY634. The net
output signal of the entire circuit has a maximum frequency
of 2 kHz, well within the bandwidth limit of all the compo-
nents. This circuit does the following integrations:

Vx�t� = Vx�t0� + �
t0

t �R2Vy�t��
R3V2

− 1
Vx�t��
dt�

R2C2

+ �
t0

t

VN�t��
dt�

R4C2
,

Vy�t� = Vy�t0� + �
t0

t �V1�Vy�t��
V2


�

− �Vx�t��
V2


2

Vy�t��
 dt�

R1C1
,

where the circuit components had the values listed in Table I,
and the parameter �−1 was set to 0.2 in the AD538 compo-
nent by a voltage divider composed of a 2200 � resistor and
a 560 � resistor. This dimensional form of the equations
is related to the dimensionless form by defining x, y, �, �, and
� as

y =
R2

R3

Vy

V2
,

� =
t

R2C2
,

� =
R2C2

R1C1

V1

V2
�R3

R2

�−1

,

x =�R2C2

R1C1

Vx

V2
= ��

Vx

�V1V2
�R2

R3

��−1�/2

,

� =�R2C2

R1C1

VN

V2

R2

R4
.

This leads to fixed points at

Vy* =
R3

R2
V2,

Vx* = �V1V2�R3

R2

��−1�/2

.

Thus, a circuit design with a given value of � has its fixed
points and its voltage scaling determined by the choice of the
ratio R3 /R2. This value can be optimally set by forcing both
the x circuit and the y circuit to reach saturation values on
the same cycle. These two peak values cannot require volt-
ages in excess of V2, or the multipliers will fail, and the
peaks will be clipped. To optimize, we equate these peaks

FIG. 12. Circuit diagram.

TABLE I. Values of circuit elements.

V1 0.4 V

V2 10 V

R1 6.8 k�

R2 122 k�

R3 19.5 k�

R4 67 k�

C1 10 nF

C2 10 nF
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when they reach V2; for the �=1 case this gives �V2 /V1
=2R2 /R3 or, for our values of V1 and V2,

R2

R3
=

�

2

V2

V1
= 6.25.

This choice then implies maximum values of xm

=�2��V2 /2V1�=3.53, and ym=�V2 /2V1=6.25. These maxi-
mum values of x and y determine the minimum noise ampli-

tude that must be present to keep the voltage peaks within
the operating range of the multipliers. The logarithmic
dependence observed in Fig. 7 can be approximated as
�x�= �1/8�ln�105/D�, so that

Dmin = 105e−8xm = 105e−8�2��V2/2V1� � 2 � 10−10. �B1�

When the amplitudes are low enough to avoid clipping,
the measured results are in agreement with those given in
Sec. III B.
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